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What are 
word 

embeddings?

• Vector representations of word meaning

pumpkin = 1 0 1 1 1 0 1 0 0 1
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Distributional Hypothesis
• Words that occur in similar contexts tend to have 

similar meanings
• It is time to harvest a pumpkin.
• It is time to harvest a squash.
• Add half a cup of canned pumpkin to the bread 

mix.
• Add half a cup of canned squash to the bread 

mix.
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Word embeddings make use of the distributional 
hypothesis to associate words with vectors.

• Word2Vec
• GloVe

Non-contextual Word Embeddings:
Every word has a single vector

• ELMo
• BERT

Contextual Word Embeddings: 
A word can have multiple vectors
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Representation 
Learning
• Methods for learning word embeddings 

are examples of representation 
learning

• Representation Learning: 
Automatically learning useful 
representations of input text

• Representation learning is self-
supervised

• Recent trends in NLP have moved 
toward representation learning and away 
from creating representations by hand 
(i.e., feature engineering)

Representation Learning
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Lexical 
Semantics

• How should we represent the meaning of a 
word?

• N-gram models: A word is a string of 
letters, or an index in a vocabulary list

• Logical representation: A word defines its 
own meaning (“dog” = DOG)

• Problem?
• These methods don’t allow us to infer 

anything deeper about a word
• Similar meanings
• Antonyms
• Positive/negative connotations
• Related contexts
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Some 
Useful 

Properties 
of Meaning

• Lemmas and senses
• Synonymy
• Word similarity
• Word relatedness
• Frames and roles
• Connotation
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Lemmas and Senses

• Lemma: The base form of a word
• Pumpkins → pumpkin
• Mice → mouse

• Word Sense: Different aspects of meaning for a word
• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) reside 
near one another in vector space

• Different senses of words should be represented as 
different vectors in contextual word representations, 
but not in non-contextual word representations
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Synonymy
• How do word senses relate to one another?

• When a word sense for one word is (nearly) identical to the word sense 
for another word, the two words are synonyms

• Synonymy: Two words are synonymous if they are substitutable for one 
another in any sentence without changing the situations in which the 
sentence would be true

• Synonymy = propositional meaning

Take a seat on my brand new leather couch! Take a seat on my brand new leather sofa!
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Word Similarity
• Words don’t often have that many synonyms, but they do have a lot of similar words

• Pumpkin ≈ squash
• Similarity deals with relations between words, not word senses

• Could word Y be commonly used in the same context as word X?
• Half a cup of squash 🙂
• Harvest a squash 🙂
• Squash spice latte 🤨

• Estimates of word similarity can help with tasks like:
• Question answering
• Paraphrasing
• Summarizing
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Word Relatedness

• Words can also be related, but not similar, to one 
another

• Word Relatedness: An association between words 
based on their shared participation in an event or 
semantic field

• Semantic Field: A set of words covering a 
particular semantic domain

• Restaurant: {waiter, menu, plate, food, …, 
chef}

• Related words can often be determined using topic 
modeling approaches

coffee
cup

espresso
cafe
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Semantic Frames and Roles
• Semantic Frame: A set of words that denote perspectives or 

participants in a particular type of event
• Commercial Transaction = {buyer, seller, goods, money}
• Closely related to semantic fields

• Semantic Role: A participant’s underlying role with respect to 
the main verb in the sentence

Natalie bought five pumpkins for $5 from Usman.

buyer goods money seller
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Connotation
• Also referred to as affective meaning
• Connotation: The aspects of a word’s meaning that are related to a writer 

or reader’s emotions, sentiment, opinions, or evaluations

• Generally three dimensions:
• Valence: Positivity

• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, controlling
• Low: Awed, influenced
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Connotation 
(Continued)
• Following this line of 

thought, each word can be 
represented by three 
numbers, corresponding to 
its value on each of the 
three affective dimensions

• When Osgood et al. (1957) 
did this, they ended up 
creating the first word 
vectors

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89
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Vector Semantics
• Vector semantics is a computational model that encodes different 

aspects of word meaning (e.g., word senses, word similarity and 
relatedness, lexical fields and frames, connotation, etc.) in vector form 
based on the word’s usage in language

• A word is defined by its environment or distribution in language 
use

• A word’s distribution is the set of contexts in which it occurs
• Context: Neighboring words or grammatical environments

• Two words that occur in very similar distributions are likely to have the 
same meaning
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We do this all the time 
to infer meaning!
• Assume you don’t know what the Cantonese word ongchoi means
• However, you read the following sentences:

• Ongchoi is delicious sautéed with garlic.
• Ongchoi is superb over rice.
• …ongchoi leaves with salty sauces…

• You’ve seen many of the other context words in these sentences 
previously:

• …spinach sautéed with garlic over rice…
• …chard stems and leaves are delicious…
• …collard greens and other salty leafy greens…

• Your (correct!) conclusion?
• Ongchoi is probably a leafy green similar to spinach, chard, 

or collard greens
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We can do the 
same thing 

computationally.

• Count the words in the context of ongchoi
• See what other words occur in those same 

contexts
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Vector 
semantics 
combines 
two 
intuitions.

• Distributionalist
• Defining a word by 

counting what other words 
occur in its environment

• Vector
• Defining a word as a 

vector point in an n-
dimensional space

• Different versions of vector 
semantics define the numbers 
in the vector differently; 
however, they’re always based 
in some way on counts of 
neighboring words

pumpkin
squash gourd

halloween

festivus

thanksgiving
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Advantages 
of Vector 

Semantics

• Easily compute word and phrase similarity
• How similar are the vectors representing 

a set of words?
• Allows models learned for downstream 

tasks to generalize to new words
• If a new word is close in vector space to 

one with a known sentiment value, we 
might be able to assume that the 
sentiment for the new word is similar as 
well

• Can be learned automatically from text 
without labels or supervision
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How do we 
learn word 
embeddings?

• TF*IDF
• Long, sparse word vectors

• Word2Vec
• Short, dense word vectors

Two commonly used models:

• GloVe
• ELMo
• BERT
• Etc….

Many, many other models!
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TF*IDF • Term Frequency * Inverse 
Document Frequency

• Meaning of a word is defined 
by the counts of nearby 
words

• To do this, a specific type of 
co-occurrence matrix is 
needed

• Term-document matrix
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Term-Document 
Matrix
• Rows: Words in a vocabulary
• Columns: Documents in a selection

As You Like It Twelfth Night

Julius Caesar Henry V

10/8/19 Natalie Parde - UIC CS 421 22



Term-Document 
Matrix
• Rows: Words in a vocabulary
• Columns: Documents in a selection

As You Like It Twelfth Night

Julius Caesar Henry V
As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
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Ties to Information 
Retrieval
• Term-document matrices were first defined 

as part of the vector space model of 
information retrieval

• Document = Count vector (column in the 
previous slide)

• Useful for searching through collections of 
documents (books, webpages, etc.) and 
returning those most relevant to a given 
search query
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Linear Algebra 
Refresher
• Vector: A list or array of numbers

• As You Like It = [1, 114, 36, 20]
• Julius Caesar = [7, 62, 1, 2]

• Vector Space: Collection of vectors
• Dimension: Vector length

• For TF*IDF, document vectors 
have a dimensionality of |V|, 
the vocabulary size

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Linear Algebra 
Refresher

• Order is not arbitrary!
• Each position in a vector 

indicates a meaningful 
dimension in which a given 
unit (in this case, a document) 
can vary

• AsYouLikeIt[0] = 1

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Linear Algebra 
Refresher

• Vectors indicate a unit’s point 
in n-dimensional space

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

fool

ba
ttl

e

Henry V [4, 13]

Julius Caesar [1, 7]

As You Like It [36, 1]

Twelfth Night [58, 0]
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What can we infer 
from this 

visualization?

• As You Like It and Twelfth 
Night are closer (and 
therefore more similar!) to 
each other than to Julius 
Caesar or Henry V

fool
ba

ttl
e

Henry V [4, 13]

Julius Caesar [1, 7]

As You Like It [36, 1]

Twelfth Night [58, 0]
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Real-world term-document matrices are 
much bigger!

• More generally, term-document matrices have |V| rows (one for 
each word type in the vocabulary) and D columns (one for each 
document in the collection)

• Vocabulary sizes are generally 10k+
• Number of documents can be enormous (e.g., all pages 

indexed by a web crawler)
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Words as 
Vectors
• In the previous example, 

we represented documents 
using vectors

• However, word 
embeddings represent 
words as vectors

• battle = [1, 0, 7, 13]

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Words as 
Vectors
• In this scenario, similar 

words have similar vectors 
because they tend to occur 
in similar documents

• Thus, we’re representing 
the meaning of a word by 
the documents in which it 
tends to occur

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Different Types of Context
• Documents aren’t the most common type of context used to represent 

meaning in word vectors
• More common: word context

• Referred to as a term-term matrix, word-word matrix, or term-context 
matrix

• In a word-word matrix, the columns are also labeled by words
• Thus, dimensionality is |V| x |V|
• Each cell records the number of times the row (target) word and the 

column (context) word co-occur in some context in a training corpus
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How can 
you decide 

if two words 
occur in the 

same 
context?

• Common context windows:
• Entire document

• Cell value = number of times the 
words co-occur in the same 
document

• Predetermined number of words 
surrounding the target

• Cell value = number of times the 
words co-occur in this set of words
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Example 
Context 
Window 
(Size = 4)
• We can take each 

occurrence of a word 
(e.g., strawberry) and 
count the context words 
around it to get a word-
word co-occurrence 
matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet
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Example 
Context 
Window 
(Size = 4)
• A simplified subset of a 

word-word co-
occurrence matrix for the 
example words 
computed from 
Wikipedia could appear 
as shown

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark … computer data result pie sugar …

cherry 0 … 2 8 9 442 25 …

strawberry 0 … 0 0 1 60 19 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

vector for “digital”
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How can we measure the similarity 
between word vectors?

• Cosine similarity
• Based on the dot product (also called inner product) from linear 

algebra
• dot product v,w = v - w = ∑/012 𝑣/𝑤/ = 𝑣1𝑤1 + 𝑣6𝑤6 +⋯+ 𝑣2𝑤2

• Similar vectors (those with large values in the same dimensions) will have 
high values; dissimilar vectors (those with zeros in different dimensions) 
will have low values
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Why don’t 
we just use 

the dot 
product?

• More frequent words tend to co-occur with 
more words and have higher co-occurrence 
values with each of them

• Thus, the raw dot product will be higher 
for frequent words

• This is problematic!
• We want our similarity metric to tell us 

how similar two words are regardless of 
frequency

• The simplest way to fix this problem is to 
normalize for the vector length (divide the 
dot product by the lengths of the two 
vectors)
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Normalized Dot Product = Cosine of 
the angle between two vectors
• The cosine similarity metrics between two vectors v and w can thus be 

computed as:
• cosine v,w = v-w

v |w| =
∑=>?
@ A=B=

∑=>?
@ A=

C ∑=>?
@ B=

C

• This value ranges between 0 (dissimilar) and 1 (similar)
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = ?
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = DD6,E,6 - F,GHE6,GG6F
DD6CIECI6C FCIGHE6CIGG6FC
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = DD6∗FIE∗GHE6I6∗GG6F
DD6CIECI6C FCIGHE6CIGG6FC
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = DD6∗FIE∗GHE6I6∗GG6F
DD6CIECI6C FCIGHE6CIGG6FC

= 0.017
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = DD6∗FIE∗GHE6I6∗GG6F
DD6CIECI6C FCIGHE6CIGG6FC

= 0.017

cos(digital, information) = F∗FI1OEG∗GHE6I1OPQ∗GG6F
FCI1OEGCI1OPQC FCIGHE6CIGG6FC

= 0.996
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Example: Computing Cosine Similarity
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(cherry, information) = DD6∗FIE∗GHE6I6∗GG6F
DD6CIECI6C FCIGHE6CIGG6FC

= 0.017

cos(digital, information) = F∗FI1OEG∗GHE6I1OPQ∗GG6F
FCI1OEGCI1OPQC FCIGHE6CIGG6FC

= 0.996

Result: information is way closer to digital than it is to cherry!
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In-Class 
Exercise

• Compute the cosine 
similarity to 
determine whether 
pumpkin or squash
is closer to 
halloween.

• https://www.google.c
om/search?q=timer

pie jack-o’-
lantern

zucchini

pumpkin 3 3 2

squash 2 1 3

halloween 2 3 1
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In-Class Exercise
pie jack-o’-lantern zucchini

pumpkin 3 3 2
squash 2 1 3
halloween 2 3 1

cos(pumpkin, halloween) = G∗6IG∗GI6∗1
GCIGCI6C 6CIGCI1C

= 1P
66 1D

= 0.969

cos(squash, halloween) = 6∗6I1∗GIG∗1
6CI1CIGC 6CIGCI1C

= 1Q
1D 1D

= 0.714
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So far, the co-
occurrence 

matrices have 
contained raw 

frequency 
counts of 
word co-

occurrences.

• However, this isn’t the best measure of 
association between words

• Some words co-occur frequently with 
many words, so won’t be very 
informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but 
less frequently across all texts
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How do we compute this?

• TF*IDF
• Term Frequency * Inverse Document Frequency

• Term Frequency: The frequency of the word t in the document d
• 𝑡𝑓W,X = count(𝑡, 𝑑)

• Document Frequency: The number of documents in which the word t
occurs

• Different from collection frequency (the number of times the word 
occurs in the entire collection of documents)
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Computing TF*IDF

• Inverse Document Frequency: The inverse 
of document frequency, where N is the total 
number of documents in the collection

• 𝑖𝑑𝑓W =
2
X]̂

• IDF is higher when the term occurs in fewer 
documents

• What is a document?
• Depends on your corpus!

• Website
• Book
• Play
• Article
• Etc.

• If desired (e.g., if the document collection is 
large), we can squash both TF and IDF by 
using the log1Q(𝑡𝑓W,X+1) and log1Q 𝑖𝑑𝑓W
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Computing TF*IDF
• TF*IDF is then simply the 

combination of TF and IDF
• 𝑡𝑓𝑖𝑑𝑓W,X = 𝑡𝑓W,X×𝑖𝑑𝑓W
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Example: 
Computing 
TF*IDF

• TF*IDF(battle, As You Like It) = ?

As 
You 
Like 
It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 
TF*IDF

• TF*IDF(battle, As You Like It) = ?
• TF(battle, As You Like It) = 1

As 
You 
Like 
It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 
TF*IDF

• TF*IDF(battle, As You Like It) = ?
• TF(battle, As You Like It) = 1
• IDF(battle) = N/DF(battle) = 4/3 = 

1.33

As 
You 
Like 
It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 
TF*IDF

• TF*IDF(battle, As You Like It) = ?
• TF(battle, As You Like It) = 1
• IDF(battle) = N/DF(battle) = 4/3 = 

1.33

• TF*IDF(battle, As You Like It) = 1 
* 1.33 = 1.33

As 
You 
Like 
It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 
TF*IDF

• TF*IDF(battle, As You Like It) = ?
• TF(battle, As You Like It) = 1
• IDF(battle) = N/DF(battle) = 4/3 = 

1.33
• TF*IDF(battle, As You Like It) = 1 

* 1.33 = 1.33
• Alternately, TF*IDF(battle, As You 

Like It) = log1Q(1 + 1) ∗
log1Q 1.33 = 0.037

As 
You 
Like 
It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Extending TF*IDF Computation
Word df idf

battle 21 log1Q
37
21 = 0.246

good 37 log1Q
37
37 = 0.000

fool 36 log1Q
37
36 = 0.012

wit 34 log1Q
37
34 = 0.037

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

• TF*IDF(battle, As You Like It) = ?
• TF(battle, As You Like It) = 1
• IDF(battle) = N/DF(battle) = 0.246
• TF*IDF(battle, As You Like It) = 1 * 0.246 = 0.246
• Alternately, TF*IDF(battle, As You Like It) = log1Q(1 + 1) ∗ 0.246 = 0.074
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074

good

fool

wit

• TF*IDF(battle, Twelfth Night) = ?
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074

good

fool

wit

• TF*IDF(battle, Twelfth Night) = ?
• TF(battle, Twelfth Night) = 0
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074

good

fool

wit

• TF*IDF(battle, Twelfth Night) = ?
• TF(battle, Twelfth Night) = 0
• IDF(battle) = N/DF(battle) = 0.246
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074

good

fool

wit

• TF*IDF(battle, Twelfth Night) = ?
• TF(battle, Twelfth Night) = 0
• IDF(battle) = N/DF(battle) = 0.246
• TF*IDF(battle, Twelfth Night) = log1Q(0 + 1) ∗ 0.246 = 0.000
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good

fool

wit

• TF*IDF(battle, Twelfth Night) = ?
• TF(battle, Twelfth Night) = 0
• IDF(battle) = N/DF(battle) = 0.246
• TF*IDF(battle, Twelfth Night) = log1Q(0 + 1) ∗ 0.246 = 0.000
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good

fool

wit

• TF*IDF(good, As You Like It) = ?
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good

fool

wit

• TF*IDF(good, As You Like It) = ?
• TF(good, As You Like It) = 114
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good

fool

wit

• TF*IDF(good, As You Like It) = ?
• TF(good, As You Like It) = 114
• IDF(good) = N/DF(good) = 0.000
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good

fool

wit

• TF*IDF(good, As You Like It) = ?
• TF(good, As You Like It) = 114
• IDF(good) = N/DF(good) = 0.000
• TF*IDF(good, As You Like It) = log1Q(114 + 1) ∗ 0.000 = 0.000
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000

good 0.000

fool

wit

• TF*IDF(good, As You Like It) = ?
• TF(good, As You Like It) = 114
• IDF(good) = N/DF(good) = 0.000
• TF*IDF(good, As You Like It) = log1Q(114 + 1) ∗ 0.000 = 0.000
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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Example: Converting TF matrix to 
TF*IDF Matrix

Word idf

battle log1Q
37
21

= 0.246

good log1Q
37
37 = 0.000

fool log1Q
37
36

= 0.012

wit log1Q
37
34 = 0.037

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

As 
You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

• As shown, using TF*IDF eliminates the importance of the ubiquitous “good”
• It also reduces the impact of the almost-ubiquitous “fool”
• It increases the importance of the rarer word “battle”
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Applications 
of TF*IDF 

Models

• The TF*IDF model produces a sparse (most 
cells have values of 0) vector with TF*IDF 
values in each cell

• Common uses of this model:
• Computing word similarity
• Computing document similarity

• Find the vectors of all words in a 
document, compute the centroid of 
those vectors, and then compute the 
similarity between two document 
centroids
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Summary: 
Word 

Embeddings 
(Part 1)

• Word embeddings are vector representations 
of meaning

• A vector for a word is computed based on the 
contexts in which the word occurs

• Context = Documents or windows of words
• Word embeddings can be sparse or dense

• Sparse: Bag of words, TF*IDF
• Dense: Word2Vec, GloVe, ELMo, BERT

• TF*IDF vectors represent a word’s meaning 
based on a combination of term frequency and 
inverse document frequency

• Cosine similarity can be used to determine the 
similarity between two word vectors
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Sparse vs. 
Dense Word 
Embeddings

• Very high-dimensional vectors
• Lots of empty (zero-valued) cells

Sparse:

• Lower-dimensional (50-1000 
cells) vectors

• Most cells have non-zero values

Dense:
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Which 
embedding 

type is 
better for 

NLP tasks?

• Dense vectors!
• Why?

• Easier to include as features in machine 
learning systems

• Classifiers have to learn ~100 
weights instead of ~50,000

• Fewer parameters → lower chance of 
overfitting

• May generalize better to new data
• Better at capturing synonymy

• Words are not distinct dimensions; 
instead, dimensions correspond to 
meaning components
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What is the 
best way to 

generate 
dense word 

vectors?

• The answer changes quite frequently:
• https://gluebenchmark.com/leaderboard/
• https://rajpurkar.github.io/SQuAD-

explorer/
• Current state-of-the-art models are 

bidirectional (trained to represent words 
using both their left and right context), 
contextual (produce different vectors for 
different word senses) models built using 
transformers (a type of neural network)
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Classic 
Method

Skip-gram with negative sampling

Often referred to as Word2Vec (Mikolov et 
al., 2013)

Available online with code and pretrained 
embeddings: 
https://code.google.com/archive/p/word2vec/
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Characteristics 
of Word2Vec

• Non-contextual
• River bank and financial bank will both 

correspond to the same word vector
• Fast
• Efficient to train
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Word2Vec Intuition

• Instead of counting how often each word 
occurs near each context word, train a 
classifier on a binary prediction task

• Is word w likely to occur near context 
word c?

• The twist: We don’t actually care about the 
classifier!

• We use the learned classifier weights from 
this prediction task as our word embeddings
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Word2Vec 
can carry 

out this 
entire 

process 
without 
manual 

supervision.

• Running text is implicitly supervised training data
• Given the question: Is word w likely to occur 

near context word c?
• If w occurs near c in the training corpus, the 

gold standard answer is “yes”
• This idea comes from neural language modeling 

(neural networks that predict the next word based on 
prior words)

• However, Word2Vec is simpler than a neural 
language model:

• It makes binary yes/no predictions rather than 
predicting words

• It trains a logistic regression classifier instead 
of a deep neural network
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High-Level 
Overview: 
How 
Word2Vec 
Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Use logistic regression to 
train a classifier to 
distinguish between those 
two cases

• Use the weights from that 
classifier as the 
embeddings for each word

pumpkin spice

pumpkin boat
pumpkin intelligence

pumpkin elephant

?pumpkin boat
🙂

☹

0.2 0.1 0.5 0.1 0.3
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Classification 
Task

• Assume the following:
• Sentence fragment: sugar, a 

tablespoon of pumpkin puree, a pinch
• Target word: pumpkin
• Context window: ± 2 words

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4

10/8/19 Natalie Parde - UIC CS 421 79



Classification 
Task

• Goal: Train a classifier that, given a tuple (t, 
c) of a target word t paired with a context 
word c (e.g., (pumpkin, puree) or (pumpkin, 
laminator)), will return the probability that c
is a real context word

• P(+|t,c)

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4
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Classification 
Task

• How to compute P(+|t,c)?
• Base it on similarity: A word is likely to occur 

near the target if its embedding is similar to the 
target embedding

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4
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0.4 0.1 0.6 0.2 0.3

0.4 0.5 0.2 0.4 0.3

0.2 0.1 0.3 0.2 0.3

0.4 0.9 0.1 0.2 0.6

0.4 0.1 0.6 0.2 0.3

Updated 
High-Level 
Overview: 
How 
Word2Vec 
Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w and 
a neighboring context word 
c as positive samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(c|t)

• Use logistic regression to 
train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the 
embeddings for each word

spice

boat

intelligence

elephant

?pumpkin boat
🙂

☹

0.2 0.1 0.5 0.1 0.3

0.1 0.1 0.6 0.1 0.3
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Classification 
Task

• How to compute P(+|t,c)?
• Base it on similarity: A word is likely to occur 

near the target if its embedding is similar to the 
target embedding

• As we already saw, vector similarity can be 
modeled using the dot product

• Similarity(t,c) ∝ 𝑡 - 𝑐
• However, the dot product does not produce a 

probability (neither does the cosine similarity!)

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4
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Classification 
Task

• How do we turn the dot product into a 
probability?

• We can use the logistic or sigmoid function 𝜎(𝑥)
• This function forms the core of logistic regression:

• 𝜎 𝑥 = 1
1Iijk

• Since Similarity(t,c) ∝ 𝑡 - 𝑐, we can set:
• P(+|t,c) = 1

1Iij^-l

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4
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Classification 
Task

• The sigmoid function doesn’t automatically 
return a probability---it just returns a number 
between 0 and 1

• To make it a probability, we need to make sure 
that the sum of the values returned for our two 
possible events (c is or is not a real context word) 
equals 1.0

• P(+|t,c) = 1
1Iij^-l

• P(-|t,c) = 1 - P(+|t,c) = ij^-l

1Iij^-l

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4
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Classification 
Task

• This gives us the probability for one word 
…but we have multiple context words in our 
window.  How do we take all of them into 
account?

• Simplifying assumption: All context words are 
independent

• So, we can just multiply their probabilities:
• P(+|t,c1:k) = ∏/01

n 1
1Iij^-l=

, or

• log P(+|t,c1:k) = ∑/01n log 1
1Iij^-l=

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4

P(+|t,c) = 1
1Iij^-l

P(-|t,c) = ij^-l

1Iij^-l

10/8/19 Natalie Parde - UIC CS 421 86



Classification 
Task

• Thus, given a test target word t and a 
context window of k words c1:k, we can 
assign a probability based on how similar the 
context window is to the target word

• The probability that we assign is based on 
applying the logistic function to the dot 
product of the embeddings of t with each 
context word c

sugar, a tables
poon

of pump
kin

puree, a pinch

c1 c2 t c3 c4
P(+|pumpkin, 
tablespoon) = 

.7

P(+|pumpkin, 
of) = .5

P(+|pumpkin, 
puree) = .9

P(+|pumpkin, 
a) = .5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575
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But, wait …where did we get our 
embeddings for each word?

• These embeddings are learned over time
• (Remember, this is the real goal of training the classifier in the 

first place!)
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Learning Skip-Gram Embeddings
• Clarification Point:

• There are two different types of embeddings that are referred to when discussing Word2Vec
• Input/output of the model
• Hidden weights

• Input and output words are represented as one-hot vectors
• Bag-of-words approach: Place a “1” in the position corresponding to a given word, and a “0” in 

every other position

• Learned embeddings are the weights for components of the classifier’s hidden layer, learned for each 
input vector
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Learning Skip-Gram Embeddings

pumpkin

0

0

1

…

0

… …

Hidden Layer

P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

0

1

…

0
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P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

0

1

…

0

Learning Skip-Gram Embeddings

pumpkin

0

0

1

…

0

… …

Hidden Layer

Word Unit 1 Unit 2 … Unit N

calendar .2 .5 … .9

coffee .3 .3 … .8

pumpkin .1 .7 … .8

… … … … …

globe .4 .9 … .6

Weights learned for 
each word, for the 
first hidden unit
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P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

0

1

…

0

Learning Skip-Gram Embeddings

pumpkin

0

0

1

…

0

… …

Hidden Layer

Word Unit 1 Unit 2 … Unit N

calendar .2 .5 … .9

coffee .3 .3 … .8

pumpkin .1 .7 … .8

… … … … …

globe .4 .9 … .6

Weights learned for 
“pumpkin” for each 
hidden unit

Weights learned for 
each word, for the 
first hidden unit
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Learning Skip-Gram Embeddings

pumpkin

0

0

1

…

0

… …

Hidden Layer

Word Unit 1 Unit 2 … Unit N

calendar .2 .5 … .9

coffee .3 .3 … .8

pumpkin .1 .7 … .8

… … … … …

globe .4 .9 … .6

Weights learned for 
“pumpkin” for each 
hidden unit

The part we care about!

10/8/19 Natalie Parde - UIC CS 421 93



Learning Skip-Gram Embeddings

• The weights in the hidden layer of the classifier are initialized to some random value for 
each word

• They are then iteratively updated to be more similar for words that occur in similar 
contexts in the training set, and less similar for words that do not

• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in 
similar contexts and minimize P(+|t,c) for words that do not, given the information we 
have at the time

• Note that throughout this process, we’re actually maintaining two sets of hidden weight 
vectors

• One for the input (the target words)
• One for the output (the context words)

10/8/19 Natalie Parde - UIC CS 421 94



Since we initialize our weights randomly, the classifier’s 
first prediction will almost certainly be wrong.

pumpkin

0

0

1

…

0

… …

Hidden Layer

P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

Predicted Actual

.9

.2

.6

0

1

0
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However, the error values from our incorrect guesses are 
what allow us to improve our embeddings over time.

pumpkin

0

0

1

…

0

… …

Hidden Layer

P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

Predicted Actual

.9

.2

.6

0

1

0

Error

-.9

.8

-.6
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However, the error values from our incorrect guesses are 
what allow us to improve our embeddings over time.

pumpkin

0

0

1

…

0

… …

Hidden Layer

P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

Predicted Actual

.9

.2

.6

0

1

0

Error

-.9

.8

-.6

Adjust the target embedding for “pumpkin” so if we tried to 
make these predictions again, we’d have lower error values
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However, the error values from our incorrect guesses are 
what allow us to improve our embeddings over time.

pumpkin

0

0

1

…

0

… …

Hidden Layer

P(+|pumpkin, boat)

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

Predicted Actual

.9

.2

.6

0

1

0

Error

-.9

.8

-.6

Adjust the context embeddings for “boat,” “spice,” and “elephant” so if we 
tried to make these predictions again, we’d have lower error values
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Training 
Data

• We are able to assume that all occurrences 
of words in similar contexts in our training 
corpus are positive samples

sugar, a tablespoon of pumpkin puree, a pinch
c1 c2 t c3 c4

t c
pumpkin tablespoon
pumpkin of
pumpkin puree
pumpkin a

Positive Examples
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Training 
Data

• However, we also need negative samples!
• Word2Vec actually uses more negative 

samples than positive samples (the exact 
ratio can vary)

• We need to create our own negative 
examples

t c
pumpkin tablespoon
pumpkin of
pumpkin puree
pumpkin a

Positive Examples
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Training 
Data

• How to create negative examples?
• Target word + “noise” word that is sampled from 

the training set
• Noise words are chosen according to their 

weighted unigram frequency 𝑝p(𝑤), where 𝛼 is a 
weight:

• 𝑝p(𝑤) = count(B)r
∑st count(Bt)r

t c
pumpkin tablespoon
pumpkin of
pumpkin puree
pumpkin a

Positive Examples
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Training 
Data

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly 

higher probability of being randomly sampled
• Assuming we want twice as many negative samples 

as positive samples, we can thus randomly select 
noise words according to weighted unigram 
frequency

t c
pumpkin tablespoon
pumpkin of
pumpkin puree
pumpkin a

Positive Examples

t c
pumpkin calendar
pumpkin exam
pumpkin loud
pumpkin bread
pumpkin cellphone
pumpkin enemy
pumpkin penguin
pumpkin drive

Negative Examples
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Learning Skip-Gram Embeddings
• It is with these samples that the algorithm:

• Maximizes the similarity of the target, context pairs drawn from positive examples
• Minimizes the similarity of the target, context pairs drawn from negative examples

• This objective is formally expressed over the whole training set as:
• 𝐿 𝜃 = ∑ W,x ∈I log 𝑃 + 𝑡, 𝑐 + ∑ W,x ∈{ log 𝑃(−|𝑡, 𝑐)

• For a specific target, context pair having k noise words n1,…,nk, this 
objective would be:

• 𝐿 𝜃 = log𝑃 + 𝑡, 𝑐 + ∑/01n log 𝑃 − 𝑡, 𝑛/
= log 𝜎 𝑐 - 𝑡 + ∑/01n log 𝜎 −𝑛/ - 𝑡 = log 1

1Iijl-^
+ ∑/01n log 1

1Ii~=-^

• The above means that we want to maximize the dot product of the word 
with the actual context words, and minimize the dot products of the word 
with the noise words
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Learning 
Skip-Gram 

Embeddings

• How do we train to this objective?
• Stochastic gradient descent (make small 

adjustments to the learned embeddings 
after each example is used)

• Remember, we start with randomly initialized 
embeddings

• We then iterate through our training corpus, 
using stochastic gradient descent to update our 
hidden target and context weight vectors after 
each sample to maximize our objective 
function

• This means that the vectors function as the 
parameters 𝜃 that our logistic regression 
function is tuning
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Learning 
Skip-Gram 
Embeddings

Even though we’re maintaining two embeddings 
for each word during training (the target vector 
and the context vector), we only need one of 
them

When we’re finished learning the embeddings, 
we can just discard the context vector

Alternately, we can add them together to create 
a summed embedding of the same 
dimensionality, or we can concatenate them into 
a longer embedding with twice as many 
dimensions
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Context 
window size 

can impact 
performance.

• Because of this, context window size is 
often tuned on a development set

• Larger window size → more required 
computations (important to consider when 
using very large datasets!)

10/8/19 Natalie Parde - UIC CS 421 106



How can we visualize (> 2-
dimensional) word embeddings?

• Several approaches based on overall vector similarity:
• List the most similar words to a given word, w, by sorting the 

vectors for all other words by their cosine similarity with the 
vector for w

• chicago: illinois, boston, philadelphia, minneapolis, 
harvard, york, toronto, california, yale, minnesota, 
angeles, detroit, atlanta

• student: students, school, teacher, graduate, 
professional, college, university, education, 
undergraduate, friend, professor, faculty, newspaper

• Use a hierarchical clustering algorithm to show which words 
are similar to others

• location → city → chicago
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How can we 
visualize (> 2-

dimensional) word 
embeddings?

• Other approaches project 
embeddings into lower-dimensional 
(e.g., 2- or 3-dimensional) spaces

• Principal component analysis 
(PCA)

• T-Distributed Stochastic 
Neighbor Embedding (T-SNE)

• Uniform Manifold 
Approximation and Projection 
(UMAP)

• Play around with visualization here: 
http://projector.tensorflow.org/
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Semantic Properties of Embeddings
• Major advantage of dense word embeddings: Ability to capture elements of meaning
• Context window size impacts what type of meaning is captured

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of 

speech
• Longer context window → more topical representations

• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., 

waiter and menu, rather than spoon and fork)
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Two Types 
of Similarity

• First-Order Co-Occurrence: Two words 
are typically nearby each other

• wrote is a first-order associate of book
• Second-Order Co-Occurrence: Two words 

have similar neighbors
• wrote is a second-order associate of 
said
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Analogy

• Word embeddings can also 
capture relational meanings

• This is done by computing the 
offsets between values in the same 
columns for different vectors

• Famous examples (Mikolov et al., 
2013; Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome
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Embeddings 
and 

Historical 
Semantics

• Embeddings can also be useful for studying 
how meaning changes over time

• How?
• Compute multiple embedding spaces
• Each space is computed using only texts 

from a certain historical period
• Useful corpora for this:

• Google N-grams: 
https://books.google.com/ngrams

• Corpus of Historical American English: 
https://www.english-corpora.org/coha/
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Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc
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Bias and 
Embeddings

• Word embeddings automatically 
learn semantic properties and 
relationships from text

The good:

• They also end up reproducing the 
implicit biases and stereotypes 
that are latent in the text

The bad:
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Bias and 
Embeddings

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora 

also produce:
• man - computer programmer + woman = 

homemaker
• doctor - father + mother = nurse

• Issues like these are problematic in real-
world applications!

• E.g., algorithms may automatically 
assign lower scores to resumes 
containing common female names when 
ranking them for technical positions
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Bias and 
Embeddings

• Embeddings also encode implicit associations
• Many implicit associations are harmless, and even useful 

for sentence processing
• flowers → pleasant
• roaches → unpleasant

• However, other implicit associations are very harmful
• Caliskan et al. (2017) identified the following known, 

harmful implicit associations in GloVe embeddings:
• African-American names were more closely 

associated with unpleasantness than European-
American names

• Male names were more closely associated with 
mathematics than female names

• Female names were more closely associated with 
the arts than male names

• Names common among older adults were more 
closely associated with unpleasantness than 
those common among younger adults
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Bias and 
Embeddings

• Thus, learning word representations poses 
an increasingly important ethical dilemma!

• Recent research has begun examining 
ways to debias word embeddings by:

• Developing transformations of 
embedding spaces that remove gender 
stereotypes but preserves definitional 
gender

• Changing training procedures to 
eliminate these issues before they arise

• Although these methods reduce bias, they 
do not eliminate it
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Bias and 
Embeddings 

+ Historical 
Semantics

• An interesting fusion of historical semantics with 
research on implicit biases in word embeddings: 
How have people’s biases shifted over time?

• Historical corpora show that the cosine similarity 
between women’s versus men’s names and common 
occupations correlate with the historical percentages 
of men and women in those occupations

• These same corpora replicate trends in both ethnic 
and gender biases over time

• Adjectives related to competence (e.g., smart, 
wise, thoughtful, and resourceful) have 
historically had a higher cosine similarity with 
male than female names, but in English text this 
bias has been slowly decreasing since 1960
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Evaluating 
Vector 
Models

• Add the vectors as features in a downstream 
NLP task, and see whether and how this 
changes performance relative to a baseline 
model

• Most important evaluation metric for word 
embeddings!
• Word embeddings are rarely needed in 

isolation
• They are almost solely used to boost 

performance in downstream tasks

Extrinsic Evaluation

• Performance at predicting word similarity

Intrinsic Evaluation

10/8/19 Natalie Parde - UIC CS 421 119



Evaluating 
Similarity 

Performance

• Compute the cosine similarity between 
vectors for pairs of words

• Compute the correlation between those 
similarity scores and word similarity ratings 
for the same pairs of words manually 
assigned by humans

• Corpora for doing this:
• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) 
imposed, (b) believed, (c) requested, 
(d) correlated
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Other 
Common 
Evaluation 
Tasks

• Evaluates the performance of 
sentence-level similarity algorithms, 
rather than word-level similarity

Semantic Textual Similarity

• Evaluates the performance of 
algorithms at solving analogies
• Athens is to Greece as Oslo is to 

(Norway)
• Mouse is to mice as dollar is to 

(dollars)

Analogy
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How do 
other word 
embedding 

methods 
differ from 

Word2Vec?

• In the context of this course, we learned 
about one specific type of dense word 
vectors

• Skip-gram with negative sampling
• As noted, there are many others!
• Even in the original Word2Vec package:

• Continuous Bag of Words (CBOW)
• Negative sampling isn’t necessary (it 

just makes performance much faster)
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A (Very 
Brief) 
Overview 
of Other 
Embedding 
Methods

CBOW
GloVe
ELMo
BERT
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Continuous 
Bag of 
Words 

(CBOW)

• Very similar to skip-gram model!
• The difference:

• Instead of learning to predict a context word from 
a target word vector, you learn to predict a 
target word from a set of context word 
vectors

• Still non-contextual
• In general, skip-gram embeddings are good with:

• Small datasets
• Rare words and phrases

• CBOW embeddings are good with:
• Larger datasets (they’re faster to train)
• Frequent words
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Global Vectors 
for Word 

Representation 
(GloVe)

• While Word2Vec is a predictive model (it 
learns to predict whether words belong in a 
target word’s context), GloVe is a count-
based model (it’s basically a fancy co-
occurrence matrix)

• In a nutshell, GloVe embeddings are 
constructed by:

• Building a huge word x context co-
occurrence matrix

• Performing dimensionality reduction on 
the matrix to reduce it to a more 
manageable size

• Still non-contextual
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Embeddings 
from 
Language 
Models 
(ELMo)

bank bank

0.2 0.3 0.1 0.2 0.5 0.1 0.1 0.6 0.2 0.4

• Contextual (predicts 
different vectors for 
different word senses)

• Does this by concatenating 
information from multiple 
layers of a bidirectional
neural language model

• Accepts character inputs 
instead of words, which 
enables the model to 
predict embeddings for out-
of-vocabulary words

• Predicts an embedding for 
a target word given its 
context
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Bidirectional Encoder Representations 
from Transformers (BERT)
• Also contextual
• Learns embeddings for subwords (more than a character, but less than a 

full word)
• This allows the model to also predict embeddings for out-of-vocabulary 

words
• Uses a bidirectional neural language model to do this, similar to ELMo

• The specific type of neural language model differs (Transformer rather 
than LSTM)
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Which 
embeddings 

are best?

• It depends on your data!
• In general, Word2Vec and GloVe produce similar 

embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-

independent embeddings
• ELMo and BERT produce context-dependent 

embeddings
• Both can also predict embeddings for new words
• BERT (or variants thereof) is the current state of the art
• ELMo may be better in cases with lots of obscure 

words that aren’t easily chunked into subwords
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Summary: 
Word 

Embeddings 
(Part 2)

• Dense vectors are generally better for NLP tasks
• Word2Vec, GloVe, ELMo, and BERT are all examples of 

dense word embeddings
• Word2Vec (specifically, the skip-gram variant) learns a 

classifier that predicts whether a word is in the context of a 
target word

• The weights from the hidden layer of this classifier are the 
learned word embeddings

• These embeddings are learned using a formula that 
maximizes the similarity between vectors for words that 
occur in the same context

• Word embeddings capture semantic properties (😀) but 
they also capture harmful stereotypes (🙁) …coming up 
with good debiasing methods is still an open problem

• Word embeddings are best evaluated in extrinsic tasks, 
but can also be evaluated based on their ability to 
accurately capture word similarity

• Different word embeddings are good for different tasks (in 
general, BERT is the current state of the art)
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